
STOPOS

Willem Vermin, willem.vermin@surfsara.nl

Bas van der Vlies, bas.vandervlies@surfsara.nl

2013-02-01

Abstract

In this article we describe the internals and externals of the program stopos. Stopos is pri-
marily designed to facilitate the running of many tasks on a cluster computer. It is based on
managing lines in a pool. These lines will in general be used as command lines to de�ne tasks.
Stopos is heavily inspired by ToPoS (https://grid.sara.nl/wiki/index.php/Using_the_Grid/ToPoS)
and experiences with disparm (https://www.surfsara.nl/systems/lisa/software/disparm). This
project was carried out as a �seed-fund project� at SURFsara.

Introduction

A typical use of a cluster computer, such as SURFsara's Lisa system 1, is running many tasks each
task with di�erent parameters. A typical example is a parameter scan. A typical job allocates
a node, and runs a number of tasks in parallel. The number of tasks should in general be equal
to the amount of cores and/or the amount of memory. Sometimes, thousands of these jobs are
necessary, and normally, the job scripts are generated by a script. In a homogeneous cluster
(all nodes have the same amount of cores and the same amount of memory) this is clumsy but
doable, but when the cluster is heterogeneous (such as the Lisa cluster), it becomes very hard
to use all types of nodes available, and adapt the number of processes to the node where the job
runs on. To deal with this problems, stopos was created: a server that manages a pool of lines.
These lines are de�ned by the user, and the server serves the lines to jobs, such that each line
is produced once. Earlier successful solutions are ToPoS2 and disparm3. ToPoS is designed to
be used on a server that can be accessed from the Grid, while disparm is based on �les in the
user's home directory. We think that ToPoS is not optimal for the Lisa system because of lack of
cluster-based authentication and the universal access. The disparm approach is in these respects
better, but in practice it appeared that the performance under heavy usage the performance was
too low, and the reliability was not 100%: sometimes a line was produced more than once, or
lines were not produced at all. Also, it is not possible to add lines dynamically: all lines have to
be inserted at the beginning. We think that the approach followed in stopos is a well balanced
solution, particularly �t to be used in a cluster environment.

Usage

A typical usage of stopos is:

• �ll the pool with lines

1https://www.surfsara.nl/systems/lisa
2https://grid.sara.nl/wiki/index.php/Using_the_Grid/ToPoS
3https://www.surfsara.nl/systems/lisa/software/disparm

1

• start jobs, each job gets one or more lines from the pool, and remove the lines that are not
needed any more4

• maybe: add more lines to the pool

Stopos is implemented as a shell function in the bash shell, or as an alias in the (t)csh shell.
Stopos calls the program stoposclient and transforms it's output to environment variables, the
most important being STOPOS_RC and STOPOS_VALUE.
The commands to create the pool:

module load stopos # activate the stopos software

stopos create # create the pool

stopos add parmfile # add the lines in the file parmfile to the pool

In a job script, one could use code like this:

module load stopos # activate the stopos software

stopos next # get a line from the pool

if [$STOPOS_RC = OK] ; then # check the return code

run_my_prog $STOPOS_VALUE # run the program using the line as parameter

fi

A more elaborate job script, using all cores available on a node is available in the Appendix,
together with the man page of stopos.

Tasks and communication

Stopos is a shell function or an alias that calls stoposclient. Stoposclient communicates with
stoposserver via an http server (apache5, thttpd6, ...). The server sends commands to the server,
and transforms the answers to a format that are sourced by stopos to de�ne environment vari-
ables. Care is taken that communications between the client and the server are short in length:
at most a few kilobytes are sent between client and server.

Tasks of the client

The client parses it's command line, sends the appropriate command to the server and receives
the response. This response is put in a form that can be 'eval-ed' so that environment variables
are set.

The client recognizes the following commands on its command line:

• -h,--h : prints a short usage message

• -v,--v : prints the version number

• create [-p,--pool POOL] : create a pool

• status [-p,--pool POOL] : get status from a pool

4Normally, a line is produced only once. However, the user can request that a line is produced and used again,
for example in the case the previous task handling this line ran into a time limit.

5http://httpd.apache.org/
6http://opensource.dyc.edu/sthttpd

2

• purge [-p,--pool POOL] : remove a pool

• pools : what are my pools

• add [-p,--pool POOL] [FILENAME]: add a �le to the pool

• next [-m,--multi] : get next line from the pool

• remove [KEY] : remove line

• dump [-p,--p POOL] : dump a line from the pool

For example:

stopos create -p mypool1

stopos add -p mypool1 parmfile

The -p (or �pool) �ag de�nes the name of the pool �le to be used (�parm�le� in this example).
If no -p or �pool �ag is present, the value of the pool is taken from the environment variable
STOPOS_POOL. If that is not available, the value �pool� is used.
The -m (or �multi) �ag signi�es that lines that are already produces, may be produced again.
The default for FILENAME is standard input.
If no value is given for KEY with the �remove� command, the value of the environment variable
STOPOS_KEY is used. This value is set by the �next� command.

The following environment variables are set by the command �stopos�:

• STOPOS_RC : return code of the command. The value �OK� means that things
went well

• STOPOS_VALUE : result of the �next� and �pools� command

• STOPOS_COMMITTED : number of times the �next� line was produced

• STOPOS_KEY : set by the �next� command. Used by the �remove� command

• STOPOS_COUNT : set by �status�: number of lines added to the pool

• STOPOS_PRESENT : set by �status�: number of lines in the pool

• STOPOS_PRESENT0 : set by �status�: number of lines never been committed

Another task is creating a unique id for the user. This id, combined with the login name of the
user and the name of the pool, will be used by the server to identify the pool to be used. The id
is stored in the HOME directory of the user, in the �le $HOME/.stopos/rc. If this �le is missing,
or inappropriate, the client will create this �le.

All commands result in a single communication with the server, except the �add� command:
the client will send a number of �add� commands to the server, one for each line of the �le.

The �dump� command is kind of special. It is created for the case a user wants to inspect
the actual contents of the pool. The �dump� command will produce one line per call, and does
not interfere with the other commands. (More speci�c: the �next� command and the �dump�
command use di�erent pointers) When the last line has been produced, the next call will result
in an error code (STOPOS_RC != OK). Then the next call will start again at the �rst available
record in the pool.

3

Messages from client to server

A message from client to server consists of the following �elds:

• stopos : the string �stopos�

• prot : the protocol to be used (i.e. which kind of database)

• id : the identi�cation of the user

• pool : the name of the pool to be used

• command : the command for the server

• multi : the value of �multi�: can a line be produced more than once?

• value : a parameter

All �elds are coded in hexadecimal strings, embraced by a �xed header and trailer. This is
to ensure that no problematic things (spaces, tabs, slashes, empty strings etc.) have to be
transmitted. The �elds are separated with the character �-�. Example: to send a message to the
server located at �http://www.stoposserver.surfsara.nl� with:

• protocol = �gdbm�

• user identi�cation = �willem.qR7w3XQp�

• poolname = �mypool�

• command = �add�

• multi = �no�

• parameter = �1 2 3�

The client would create the following url:

http://www.stoposserver.surfsara.nl?ZZZ73746f706f73YY �stopos�

-ZZZ6764626dYY �gdbm�

-ZZZ77696c6c656d2e7152377733585170YY �willem.qR7w3XQp�
-ZZZ6d79706f6f6cYY �mypool�

-ZZZ616464YY �add�

-ZZZ6e6fYY �no�

-ZZZ3120322033YY �1 2 3�

The header is �ZZZ�, the trailer is �YY�.

4

Tasks for the server

The server parses the message from the client, executes the command and sends the results back.
The commands the the server recognizes are:

• create : create a pool

• status : send the status of the pool

• purge : remove the pool

• add : add a line, taken from the �value� �eld of the message

• next : send the next line together with the �key� and �committed�. Take care of
�multi�

• remove : remove a line with key given in the �value� �eld

• dump : return next line to be dumped, together with �key� and �committed�

• pools : return the names of the available pools for the user

Not accidentally: these commands have the same names as the commands for the client, but the
context is di�erent.

Communication from server to client

The server parses the message from the client and sends the result back, using �Content-type:
text/plain�. The server puts the following string in the output:

STOPOS:

This string is immediately followed by the desired output, which consists of the following �elds:

• return message : �OK� or some error message

• key : key of the record just retrieved or empty

• committed : number of times the record has been committed or empty

• count : number of records added so far or empty

• present : number of records present or empty

• present0 : number of records never been committed or empty

• value : return value or empty

• new line character

The client will search for the string �STOPOS:� and use the string immediately following as the
result. The developer can, if she wishes, print extra information and have a look at the total
output of the server, as long as she does not use the string �STOPOS:�. The �elds are encoded,
just like is done with the message from the client to the server, only the separator here is �+�
for no special reason.

5

Internals of the client

The client parses the command line, using getopt(3). It performs some basic checks on the
parameters given, and sends an appropriate command to the server, using libcurl(3). The output
from the server is parsed and transformed into statements that can be executed in the shell. These
commands set environment variables, with names starting with �STOPOS_�.

Internals of the server

The server parses the command sent from the client and an http-server (apache, thttpd), executes
it and sends the results back to the client. Most of the interesting work is done in the class
�stopos_pool�. This class, from which a database-speci�c class has to be derived, maintains a
double linked list of lines. The addressing of the lines is based on keys that are computed from
the counter that is incremented each time a line is added. The derived class has to deal with
some basic I/O operations: creating, opening, closing and removing of the database; reading,
writing and removing records. In this code, four database implementations are provided:

• based on gdbm 7

• based om mysql 8

• based on a �at ascii �le

• based on �les in a folder, each �le containing one line

The client determines which implementation the server has to use. Storage of a record is based
on the key, but, if desirable, the derived class can provide a suitable slot for storing the record.
This feature is used in the ��at �le� solution, in order to be able to re-use space occupied by
removed records.

Storage of lines

Lines are stored in records, which also contain extra �elds. The records are hexadecimal coded,
just like the communication from client to server. The separation character is here '/'. Records
are stored using unique keys, generated by the class �stopos_pool�. The derived class has no
knowledge about the meaning of the records: it's only task is to store, retrieve and delete them.

Performance

A program �test_pool.cpp� has been provided which runs all four implementations, without an
http server, but directly calling the functions from the class �stopos_pool� and reports how much
time a implementation takes. Furthermore, it does some consistency checks. The pool consists
of a few hundreds of lines. The results are9:

database time (sec)

gdbm 3.31

flatfile 0.19

files 0.73

7http://www.gnu.org.ua/software/gdbm/
8http://www.mysql.com/
9The program was run on a Linux workstation, equipped with a �normal� (no SSD) disk

6

mysql 4.71

The winner is clearly the ��at �le� implementation. Disadvantage of this solution (and also
of the ��les� and �mysql� solution) is the amount of space that is used for the database: each
line takes 4 Kbyte. The �gdbm� solution does not have this problem.
Normally, the stopos software will be used using an http server, so it is more relevant to have
look at the timings in this case. As an example, that man page of bash (5459 lines) was put in
the pool, and all lines were retrieved and removed:

database time(sec)

gdbm 187

flatfile 182

files 190

mysql 309

These timings show, that for performance reasons, there is not much di�erence between �gdbm�,
��at�le� and ��les�. We choose the �gdbm� implementation, because of it's economy with disk
space used.

Installation

The source tree contains a �le �Make.inc�, de�ning variables that determine the version of the
program, the installation directories and which database versions should be produced. This �le
will be included in the Make�le. A trivial script �makeit� sets the umask and calls make(1)
to create and install the executables. The script �clean� executes a �make clean� to get rid of
compilation products.

Extra tools

The source tree also contains the scripts �sara-get-num-cores� and �sara-get-mem-size�, along
with their man pages. Sara-get-num-cores prints the number of available cores, while sara-get-
mem-size prints the amount of memory. Both numbers can be used to determine how many
processes should run in parallel on a given node. These scripts and man pages will be installed
also by calling �./makeit�.

Example of a job using stopos

1 #PBS −lnodes=1 −lwa l l t ime =3:00:00
2 module load stopos
3 ncores=` sara−get−num−cores `
4 f o r ((i =1; i<=ncores ; i ++)) ; do
5 (
6 f o r ((j =1; j <=10; j++)) ; do
7 stopos next −p pool1
8 i f ["$STOPOS_RC" != "OK"] ; then
9 break
10 f i
11 eva l " scanner $STOPOS_VALUE"
12 stopos remove −p pool1

7

13 done
14) &
15 done
16 wait

• 1 Note: we do not specify how many cores a node should have.

• 2 Load the stopos module.

• 3 Determine the number of cores available on this node: Module stopos contains 'sara-get-
num-cores': this command prints the number of cores available on the node. The command
'sara-get-mem-size' prints the available amount of memory in Mbytes. We do not use it
here, but this number could be interesting when running memory intensive programs.

• 4 Loop over the number of cores. The content of the loop is placed in the background (see
14)

• 6 Loop over the number of the desired number of repetitions.

• 7 Here we get the value of the next line, delivered in the environment variable STO-
POS_VALUE. The environment variable STOPOS_RC has the value "OK" if everything
went ok. STOPOS_KEY contains a value that can be used to remove the line from the
pool. We use the pool 'pool1', created before.

• 8 .. 10 Break out the loop if stopos fails (usually because there are no lines left).

• 11 Use the parameters in $STOPOS_VALUE. The 'eval' and quotes ensure that spaces
and quotes in the parameters are correctly interpreted.

• 12 Remove the line we just processed from the pool.

• 14 Notice the &: this takes care that ncores instantiations of scanner will be started in
parallel.

• 16 The 'wait' ensures that the job script will only �nish after all background processes are
ended.

• The job can be submitted a number of times with one 'qsub' command, for example: qsub
-t 1-100 job

Man page of stopos

STOPOS(1) STOPOS(1)

NAME
stopos − a l i a s to c a l l the program s t o p o s c l i e n t and eva l i t ' s output

SYNOPSIS

8

s topos −h,−−help

stopos −v,−−ve r s i on

stopos c r e a t e [−p,−−pool POOL]

stopos s t a tu s [−p,−−pool POOL]

stopos purge [−p,−−pool POOL]

stopos poo l s

s topos add [−p,−−pool POOL] [FILENAME]

stopos next [−p,−−pool POOL] [−m,−−mult i]

s topos remove [−p,−−pool POOL] [KEY]

stopos dump [−p,−−pool POOL]

The −q,−−qu i e t f l a g sup r e s s e s most output .

DESCRIPTION
Stopos i s an a l i a s us ing the program s t opo s c l i e n t , an u t i l i t y to s t o r e
and r e t r i e v e t ext l i n e s in a pool . In genera l , the t ext l i n e s are used
as command parameters , s e e Examples .

COMMANDS
−h,−−help

Pr in t s usage in fo rmat ion .

−v,−−ve r s i on
Pr in t s v e r s i on .

c r e a t e [−p,−−pool POOL] [FILENAME]
Creates new pool . A pool with the same name w i l l be removed f i r s t .

s t a tu s
Pr in t s to standard e r r o r environment va r i ab l e
−−−
t o t a l number o f l i n e s added STOPOS_COUNT
number o f l i n e s pre sent STOPOS_PRESENT
number o f l i n e s never committed STOPOS_PRESENT0

purge [−p,−−pool POOL]
Removes the pool .

poo l s [−p,−−pool POOL]

9

L i s t s on standard e r r o r the poo l s a v a i l a b l e . The environment
va r i ab l e STOPOS_VALUE i s s e t a c co rd ing ly .

add [−p,−−pool POOL] [FILENAME]
Adds l i n e s from FILENAME, de f au l t from s td in . The environ
ment v a r i a b l e s STOPOS_RC and STOPS_KEY are s e t .
NOTE: when stopos i s read ing from a pipe as in :

cat pa rmf i l e | s topos add
no environment v a r i a b l e s are s e t .

next [−p,−−pool POOL] [−m,−−mult i]
Gets the next l i n e from the pool . The environment v a r i a b l e s
STOPOS_VALUE, STOPOS_COMMITTED and STOPOS_KEY are set , s e e
ENVIRONMENT. By de fau l t , the same l i n e in the pool w i l l be
produced only once . When a l l l i n e s are commited , STOPS_RC
w i l l not be equal to OK. Using the −−mult i f l a g , the same
l i n e can be produced more than once , i f nece s sa ry s topos
w i l l wrap around . This can be u s e f u l f o r dea l i ng with
crashed jobs .

remove [−p,−−pool POOL] [KEY]
Removes the l i n e with key KEY as ready . I f not s p e c i f i e d on
the commandline , the value o f environment va r i ab l e STO
POS_KEY i s used .

dump [−p,−−pool POOL]
Reads the next a v a i l a b l e l i n e , and puts i t , preceded by i t ' s
key and number o f commitments in environment va r i ab l e STO
POS_VALUE. The f i r s t c a l l w i l l produce the f i r s t l i n e . When
a l l l i n e s have been de l i v e r ed , STOPOS_RC get s a value other
than OK. A subsequent c a l l w i l l s t a r t the dump with the
f i r s t l i n e again .

OPTIONS
−p,−−pool POOL

POOL i s a unique name o f the pool . De fau l t : pool . The name
o f the pool can a l s o be s e t us ing the environment va r i ab l e
STOPOS_POOL. The command l i n e f l a g has precedence .

ENVIRONMENT
Stopos s e t s the f o l l ow i ng environment v a r i a b l e s :

STOPOS_RC i f the value i s OK, than no e r r o r s were found

STOPOS_KEY conta in s the keyvalue o f the l i n e produced with the
' next ' command

STOPOS_COMMITTED conta in s the number o f t imes the l i n e has been

10

committed

STOPOS_VALUE conta in s the l i n e produced by the ' next ' command or
the r e s u l t o f the ' pools ' command

STOPOS_COUNT STOPOS_PRESENT STOPOS_PRESENT0 see the ' s tatus '
command above

Stopos uses the f o l l ow i ng environment v a r i a b l e s :

STOPOS_POOL see the d e s c r i p t i o n o f the −−pool f l a g under OPTIONS

STOPOS_KEY see the ' remove ' f l a g above

STOPOS_SERVER_URL the u r l s topos uses to a c c e s s the se rver ,
d e f au l t http :// s topos . osd . s u r f s a r a . n l / cg i−bin / s t opo s s e r v e r

EXAMPLES
Create a pool with the f i r s t 10 l i n e s from the man page o f sed :

man sed | head > parmf i l e
s topos c r e a t e
s topos add parmf i l e

Get a l i n e :

s topos next

The environment va r i ab l e STOPOS_VALUE conta in s now one o f
the f i r s t ten l i n e s o f the man page o f sed .

You can use t h i s in a command l i k e t h i s :

eva l "myparser $STOPOS_VALUE"

The l i n e can be removed by :

s topos remove

Fina l ly , the pool can be complete ly removed by :

s topos purge

FILES
$HOME/ . s topos / id
This f i l e i s s e t by stopos to s t o r e an unique id , which ,
toge the r with the l o g i n name , w i l l be used to i d e n t i f y which

11

poo l s are yours .

SEE ALSO
sara−get−mem−s i z e (1) , sara−get−num−co r e s (1) , s t o p o s c l i e n t (1) ,
stoposdump (1)

AUTHORS
Willem Vermin

BUGS
No bugs known yet .

STOPOS(1)

12

